Entropy-based early detection of critical transitions in spatial vegetation fields

Author:

Tirabassi Giulio1ORCID,Masoller Cristina1ORCID

Affiliation:

1. Departament de Física, Universitat Politècnica de Catalunya, Terrassa 08222, Spain

Abstract

In semiarid regions, vegetated ecosystems can display abrupt and unexpected changes, i.e., transitions to different states, due to drifting or time-varying parameters, with severe consequences for the ecosystem and the communities depending on it. Despite intensive research, the early identification of an approaching critical point from observations is still an open challenge. Many data analysis techniques have been proposed, but their performance depends on the system and on the characteristics of the observed data (the resolution, the level of noise, the existence of unobserved variables, etc.). Here, we propose an entropy-based approach to identify an upcoming transition in spatiotemporal data. We apply this approach to observational vegetation data and simulations from two models of vegetation dynamics to infer the arrival of an abrupt shift to an arid state. We show that the permutation entropy (PE) computed from the probabilities of two-dimensional ordinal patterns may provide an early warning indicator of an approaching tipping point, as it may display a maximum (or minimum) before decreasing (or increasing) as the transition approaches. Like other spatial early warning indicators, the spatial permutation entropy does not need a time series of the system dynamics, and it is suited for spatially extended systems evolving on long time scales, like vegetation plots. We quantify its performance and show that, depending on the system and data, the performance can be better, similar or worse than the spatial correlation. Hence, we propose the spatial PE as an additional indicator to try to anticipate regime shifts in vegetated ecosystems.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3