Adaptive processing and perceptual learning in visual cortical areas V1 and V4

Author:

Astorga Guadalupe1,Chen Minggui1ORCID,Yan Yin234ORCID,Altavini Tiago Siebert1,Jiang Caroline S.1,Li Wu234ORCID,Gilbert Charles1ORCID

Affiliation:

1. The Rockefeller University, New York, NY 10065

2. State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

3. IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China

4. College of Life Sciences, Beijing Normal University, Beijing 100875, China

Abstract

Neurons in visual cortical areas primary visual cortex (V1) and V4 are adaptive processors, influenced by perceptual task. This is reflected in their ability to segment the visual scene into task-relevant and task-irrelevant stimulus components and by changing their tuning to task-relevant stimulus properties according to the current top-down instruction. Differences between the information represented in each area were seen. While V1 represented detailed stimulus characteristics, V4 filtered the input from V1 to carry the binary information required for the two-alternative judgement task. Neurons in V1 were activated at locations where the behaviorally relevant stimulus was placed well outside the grating-mapped receptive field. By systematically following the development of the task-dependent signals over the course of perceptual learning, we found that neuronal selectivity for task-relevant information was initially seen in V4 and, over a period of weeks, subsequently in V1. Once the learned information was represented in V1, on any given trial, task-relevant information appeared initially in V1 responses, followed by a 12-ms delay in V4. We propose that the shifting representation of learned information constitutes a mechanism for systems consolidation of memory.

Funder

National Science Foundation

Leon Levy Foundation

Mohapatra Fellowship for Vision Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3