Ultrabroadband plasmon driving selective photoreforming of methanol under ambient conditions

Author:

Uddin Nasir1ORCID,Sun Zhehao12ORCID,Langley Julien1,Lu Haijiao1,Cao Pengfei3,Wibowo Ary4ORCID,Yin Xinmao56,Tang Chi Sin7,Nguyen Hieu T.4,Evans Jack D.8ORCID,Li Xinzhe9ORCID,Zhang Xiaoliang10,Heggen Marc3,Dunin-Borkowski Rafal E.3ORCID,Wee Andrew T. S.6ORCID,Zhao Haitao2,Cox Nicholas1,Yin Zongyou1ORCID

Affiliation:

1. Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia

2. Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China

3. Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungzentrum Jülich GmbH 52428, Jülich, Germany

4. Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra ACT 2601, Australia

5. Physics Department, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, P.R. China

6. Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore

7. Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603, Singapore

8. Centre for Advanced Nanomaterials and Department of Chemistry, Adelaide, The University of Adelaide, Adelaide SA 5000, Australia

9. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China

10. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, P.R. China

Abstract

Liquid methanol has the potential to be the hydrogen energy carrier and storage medium for the future green economy. However, there are still many challenges before zero-emission, affordable molecular H 2 can be extracted from methanol with high performance. Here, we present noble-metal-free Cu–WC/W plasmonic nanohybrids which exhibit unsurpassed solar H 2 extraction efficiency from pure methanol of 2,176.7 µmol g −1  h −1 at room temperature and normal pressure. Macro-to-micro experiments and simulations unveil that local reaction microenvironments are generated by the coperturbation of WC/W’s lattice strain and infrared-plasmonic electric field. It enables spontaneous but selective zero-emission reaction pathways. Such microenvironments are found to be highly cooperative with solar-broadband-plasmon-excited charge carriers flowing from Cu to WC surfaces for efficient stable CH 3 OH plasmonic reforming with C 3 -dominated liquid products and 100% selective gaseous H 2 . Such high efficiency, without any CO x emission, can be sustained for over a thousand-hour operation without obvious degradation.

Funder

ANU Futures Scheme

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3