Ancestral sex-role plasticity facilitates the evolution of same-sex sexual behavior

Author:

Mizumoto Nobuaki1ORCID,Bourguignon Thomas1,Bailey Nathan W.2

Affiliation:

1. Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495 Japan

2. School of Biology, University of St. Andrews, St. Andrews, Fife, KY16 9TH, United Kingdom

Abstract

Recent attempts to explain the evolutionary prevalence of same-sex sexual behavior (SSB) have focused on the role of indiscriminate mating. However, in many cases, SSB may be more complex than simple mistaken identity, instead involving mutual interactions and successful pairing between partners who can detect each other’s sex. Behavioral plasticity is essential for the expression of SSB in such circumstances. To test behavioral plasticity’s role in the evolution of SSB, we used termites to study how females and males modify their behavior in same-sex versus heterosexual pairs. Male termites follow females in paired “tandems” before mating, and movement patterns are sexually dimorphic. Previous studies observed that adaptive same-sex tandems also occur in both sexes. Here we found that stable same-sex tandems are achieved by behavioral plasticity when one partner adopts the other sex’s movements, resulting in behavioral dimorphism. Simulations based on empirically obtained parameters indicated that this socially cued plasticity contributes to pair maintenance, because dimorphic movements improve reunion success upon accidental separation. A systematic literature survey and phylogenetic comparative analysis suggest that the ancestors of modern termites lack consistent sex roles during pairing, indicating that plasticity is inherited from the ancestor. Socioenvironmental induction of ancestral behavioral potential may be of widespread importance to the expression of SSB. Our findings challenge recent arguments for a prominent role of indiscriminate mating behavior in the evolutionary origin and maintenance of SSB across diverse taxa.

Funder

MEXT | Japan Society for the Promotion of Science

UKRI | Natural Environment Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3