A synaptic filtering mechanism in visual threat identification in mouse

Author:

Wu Qiwen12ORCID,Li E.1,Zhang Yifeng1ORCID

Affiliation:

1. Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Predator detection is key to animal’s survival. Superior colliculus (SC) orchestrates the animal’s innate defensive responses to visually detected threats, but how threat information is transmitted from the retina to SC is unknown. We discovered that narrow-field neurons in SC were key in this pathway. Using in vivo calcium imaging and optogenetics-assisted interrogation of circuit and synaptic connections, we found that the visual responses of narrow-field neurons were correlated with the animal’s defensive behaviors toward visual stimuli. Activation of these neurons triggered defensive behaviors, and ablation of them impaired the animals’ defensive responses to looming stimuli. They receive monosynaptic inputs from looming-sensitive OFF-transient alpha retinal ganglion cells, and the synaptic transmission has a unique band-pass feature that helps to shape their stimulus selectivity. Our results describe a cell-type specific retinotectal connection for visual threat detection, and a coding mechanism based on synaptic filtering.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3