Fatigue of red blood cells under periodic squeezes in ECMO

Author:

Pan Yunfan1ORCID,Li Yan1ORCID,Li Yongjian1ORCID,Li Jiang2ORCID,Chen Haosheng1ORCID

Affiliation:

1. Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

2. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Hemolysis usually happens instantly when red blood cells (RBCs) rupture under a high shear stress. However, it is also found to happen gradually in the extracorporeal membrane oxygenation (ECMO) under low but periodic squeezes. In particular, the gradual hemolysis is accompanied by a progressive change in morphology of RBCs. In this work, the gradual hemolysis is studied in a microfluidic device with arrays of narrow gaps the same as the constructions in ECMO. RBCs are seen to deform periodically when they flow through the narrow gaps, which causes the release of adenosine-triphosphate (ATP) from RBCs. The reduced ATP level in the cells leads to the fatigue of RBCs with the progressive changes in morphology and the gradual loss of deformability. An empirical model for the fatigue of RBCs is established under the periodic squeezes with controlled deformation, and it reveals a different way of the hemolysis that is dominated by the squeeze frequency. This finding brings a new insight into the mechanism of hemolysis, and it helps to improve the design of circulatory support devices.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3