Cross-sections of doubly curved sheets as confined elastica

Author:

He Mengfei12ORCID,Démery Vincent34ORCID,Paulsen Joseph D.12ORCID

Affiliation:

1. Department of Physics, Syracuse University, Syracuse, NY 13244

2. BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244

3. Gulliver, CNRS, École Supérieure de Physique et Chimie Industrielles de Paris, Paris Sciences et Lettres Research University, Paris 75005, France

4. Univ Lyon, École Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon F-69342, France

Abstract

Although thin films are typically manufactured in planar sheets or rolls, they are often forced into three-dimensional (3D) shapes, producing a plethora of structures across multiple length scales. To understand this complex response, previous studies have either focused on the overall gross shape or the small-scale buckling that decorates it. A geometric model, which considers the sheet as inextensible yet free to compress, has been shown to capture the gross shape of the sheet. However, the precise meaning of such predictions, and how the gross shape constrains the fine features, remains unclear. Here, we study a thin-membraned balloon as a prototypical system that involves a doubly curved gross shape with large amplitude undulations. By probing its side profiles and horizontal cross-sections, we discover that the mean behavior of the film is the physical observable that is predicted by the geometric model, even when the buckled structures atop it are large. We then propose a minimal model for the horizontal cross-sections of the balloon, as independent elastic filaments subjected to an effective pinning potential around the mean shape. Despite the simplicity of our model, it reproduces a broad range of phenomena seen in the experiments, from how the morphology changes with pressure to the detailed shape of the wrinkles and folds. Our results establish a route to combine global and local features consistently over an enclosed surface, which could aid the design of inflatable structures, or provide insight into biological patterns.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3