First observations of core-transiting seismic phases on Mars

Author:

Irving Jessica C. E.1ORCID,Lekić Vedran2ORCID,Durán Cecilia3ORCID,Drilleau Mélanie4ORCID,Kim Doyeon3,Rivoldini Attilio5,Khan Amir36ORCID,Samuel Henri7ORCID,Antonangeli Daniele8ORCID,Banerdt William Bruce9ORCID,Beghein Caroline10ORCID,Bozdağ Ebru1112,Ceylan Savas3,Charalambous Constantinos13ORCID,Clinton John14ORCID,Davis Paul10,Garcia Raphaël4,Domenico Giardini 3ORCID,Horleston Anna Catherine1ORCID,Huang Quancheng12,Hurst Kenneth J.9ORCID,Kawamura Taichi7,King Scott D.15,Knapmeyer Martin16ORCID,Li Jiaqi10ORCID,Lognonné Philippe7ORCID,Maguire Ross17,Panning Mark P.9,Plesa Ana-Catalina16,Schimmel Martin18,Schmerr Nicholas C.2ORCID,Stähler Simon C.319,Stutzmann Eleonore7ORCID,Xu Zongbo7

Affiliation:

1. School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom

2. Department of Geology, University of Maryland, College Park 20742

3. Institute of Geophysics, ETH Zurich, Zurich 8092, Switzerland

4. Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse 31055, France

5. Royal Observatory of Belgium, Brussels 1180, Belgium

6. Institute of Geochemistry and Petrology, ETH Zurich, Zurich 8092, Switzerland

7. Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris 75005, France

8. Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris 75005, France

9. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

10. Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095

11. Department of Applied Mathematics and Statistics & Department of Geophysics, Colorado School of Mines, Golden, CO 80401

12. Department of Geophysics, Colorado School of Mines, Golden, CO 80401

13. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom

14. Swiss Seismological Service, ETH Zurich, Zurich 8092, Switzerland

15. Department of Geosciences, Virginia Tech, Blacksburg, VA 24061

16. DLR, Institute of Planetary Research, Berlin 12489, Germany

17. Department of Geology, University of Illinois Urbana-Champaign, Urbana, IL 61801

18. Geosciences Barcelona - CSIC, Barcelona 08028, Spain

19. Physik-Institut, Universität Zürich, Zurich 8057, Switzerland

Abstract

We present the first observations of seismic waves propagating through the core of Mars. These observations, made using seismic data collected by the InSight geophysical mission, have allowed us to construct the first seismically constrained models for the elastic properties of Mars’ core. We observe core-transiting seismic phase SKS from two farside seismic events detected on Mars and measure the travel times of SKS relative to mantle traversing body waves. SKS travels through the core as a compressional wave, providing information about bulk modulus and density. We perform probabilistic inversions using the core-sensitive relative travel times together with gross geophysical data and travel times from other, more proximal, seismic events to seek the equation of state parameters that best describe the liquid iron-alloy core. Our inversions provide constraints on the velocities in Mars’ core and are used to develop the first seismically based estimates of its composition. We show that models informed by our SKS data favor a somewhat smaller (median core radius = 1,780 to 1,810 km) and denser (core density = 6.2 to 6.3 g/cm3) core compared to previous estimates, with a P-wave velocity of 4.9 to 5.0 km/s at the core–mantle boundary, with the composition and structure of the mantle as a dominant source of uncertainty. We infer from our models that Mars’ core contains a median of 20 to 22 wt% light alloying elements when we consider sulfur, oxygen, carbon, and hydrogen. These data can be used to inform models of planetary accretion, composition, and evolution.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference95 articles.

1. W. Bruce Banerdt et al . Initial results from the InSight mission on Mars. Nat. Geosci. 13 183–189 (2020) 10.1038/s41561-020-0544-y.

2. P. Lognonné et al . Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nat. Geosci. 13 213–220 (2020) 10.1038/s41561-020-0536-y.

3. B. Knapmeyer-Endrun et al . Thickness and structure of the Martian crust from InSight seismic data. Science 373 438–443 (2021) 10.1126/science.abf8966.

4. D. Kim et al. Improving constraints on planetary interiors with PPs receiver functions. J. Geophys. Res. Planets 126 e2021JE006983 (2021) 10.1029/2021JE006983.

5. D. Kim et al . Surface waves and crustal structure on Mars. Science 378 417–421 (2022). 10.1126/science.abq7157.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3