Invasion of Toxoplasma gondii bradyzoites: Molecular dissection of the moving junction proteins and effective vaccination targets

Author:

Najm Rania12,Ruivo Margarida T. Grilo2ORCID,Penarete-Vargas Diana Marcela2,Hamie Maguy1,Mouveaux Thomas3,Gissot Mathieu3ORCID,Boulanger Martin J.4ORCID,El Hajj Hiba1,Lebrun Maryse2ORCID

Affiliation:

1. Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, 1107 2020 Beirut, Lebanon

2. LPHI, CNRS, INSERM, Université de Montpellier, 34095 Montpellier, France

3. University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France

4. Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada

Abstract

Toxoplasmosis is a neglected parasitic disease necessitating public health control. Host cell invasion by Toxoplasma occurs at different stages of the parasite’s life cycle and is crucial for survival and establishment of infection. In tachyzoites, which are responsible for acute toxoplasmosis, invasion involves the formation of a molecular bridge between the parasite and host cell membranes, referred to as the moving junction (MJ). The MJ is shaped by the assembly of AMA1 and RON2, as part of a complex involving additional RONs. While this essential process is well characterized in tachyzoites, the invasion process remains unexplored in bradyzoites, which form cysts and are responsible for chronic toxoplasmosis and contribute to the dissemination of the parasite between hosts. Here, we show that bradyzoites invade host cells in an MJ-dependent fashion but differ in protein composition from the tachyzoite MJ, relying instead on the paralogs AMA2 and AMA4. Functional characterization of AMA4 reveals its key role for cysts burden during the onset of chronic infection, while being dispensable for the acute phase. Immunizations with AMA1 and AMA4, alone or in complex with their rhoptry neck respective partners RON2 and RON2 L1 , showed that the AMA1–RON2 pair induces strong protection against acute and chronic infection, while the AMA4–RON2 L1 complex targets more selectively the chronic form. Our study provides important insights into the molecular players of bradyzoite invasion and indicates that invasion of cyst-forming bradyzoites contributes to cyst burden. Furthermore, we validate AMA–RON complexes as potential vaccine candidates to protect against toxoplasmosis.

Funder

Alliance Française contre les Maladies Parasitaires

Fondation pour la Recherche Médicale

AUB | Faculty of Medicine, American University of Beirut

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3