Modulation of potassium conductances optimizes fidelity of auditory information

Author:

Kaczmarek Leonard K.12ORCID

Affiliation:

1. Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520

2. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520

Abstract

Potassium channels in auditory neurons are rapidly modified by changes in the auditory environment. In response to elevated auditory stimulation, short-term mechanisms such as protein phosphorylation and longer-term mechanisms such as accelerated channel synthesis increase the amplitude of currents that promote high-frequency firing. It has been suggested that this allows neurons to fire at high rates in response to high sound levels. We have carried out simple simulations of the response to postsynaptic neurons to patterns of neurotransmitter release triggered by auditory stimuli. These demonstrate that the amplitudes of potassium currents required for optimal encoding of a low-amplitude auditory signal differ from those for louder sounds. Specifically, the cross-correlation of the output of a neuron with an auditory stimulus is improved by increasing potassium currents as sound amplitude increases. Temporal fidelity for low-frequency stimuli is improved by increasing potassium currents that activate at negative potentials, while that for high-frequency stimuli requires increases in currents that activate at positive membrane potentials. These effects are independent of the firing rate. Moreover, levels of potassium currents that maximize the fidelity of the output of an ensemble of neurons differ from those that maximize fidelity for a single neuron. This suggests that the modulatory mechanisms must coordinate channel activity in groups of neurons or an entire nucleus. The simulations provide an explanation for the modulation of the intrinsic excitability of auditory brainstem neurons by changes in environmental sound levels, and the results may extend to information processing in other neural systems.

Funder

HHS | NIH | National Institute on Deafness and Other Communication Disorders

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3