A forward modeling approach to analyzing galaxy clustering with S im BIG

Author:

Hahn ChangHoon1ORCID,Eickenberg Michael2,Ho Shirley3,Hou Jiamin45ORCID,Lemos Pablo367ORCID,Massara Elena89ORCID,Modi Chirag23,Moradinezhad Dizgah Azadeh10,Blancard Bruno Régaldo-Saint2ORCID,Abidi Muntazir M.10

Affiliation:

1. Department of Astrophysical Sciences, Princeton University, Princeton NJ 08544

2. Center for Computational Mathematics, Flatiron Institute, New York, NY 10010

3. Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010

4. Department of Astronomy, University of Florida, Gainesville, FL 32611

5. Max-Planck-Institut für Extraterrestrische Physik, Garching bei München 85748, Germany

6. Department of Physics, Université de Montréal, Montréal, QC H2V 0B3, Canada

7. Mila - Quebec Artificial Intelligence Institute, Montréal, QC H2S 3H1, Canada

8. Waterloo Centre for Astrophysics, University of Waterloo, Waterloo, ON N2L 3G1, Canada

9. Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

10. Département de Physique Théorique, Université de Genève, Genève 4 1211, Switzerland

Abstract

We present cosmological constraints from a simulation-based inference (SBI) analysis of galaxy clustering from the S im BIG forward modeling framework. S im BIG leverages the predictive power of high-fidelity simulations and provides an inference framework that can extract cosmological information on small nonlinear scales. In this work, we apply S im BIG to the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxy sample and analyze the power spectrum, P ( k ) , to k max = 0.5 h / Mpc . We construct 20,000 simulated galaxy samples using our forward model, which is based on 2,000 high-resolution Q uijote N -body simulations and includes detailed survey realism for a more complete treatment of observational systematics. We then conduct SBI by training normalizing flows using the simulated samples and infer the posterior distribution of Λ CDM cosmological parameters: Ω m , Ω b , h , n s , σ 8 . We derive significant constraints on Ω m and σ 8 , which are consistent with previous works. Our constraint on σ 8 is 27% more precise than standard P analyses because we exploit additional cosmological information on nonlinear scales beyond the limit of current analytic models, k > 0.25 h / Mpc . This improvement is equivalent to the statistical gain expected from a standard P analysis of galaxy sample 60% larger than CMASS. While we focus on P in this work for validation and comparison to the literature, S im BIG provides a framework for analyzing galaxy clustering using any summary statistic. We expect further improvements on cosmological constraints from subsequent S im BIG analyses of summary statistics beyond P .

Funder

Schmidt Futures Foundation

NASA ROSES

EC | Horizon Europe | Excellent Science | HORIZON EUROPE Marie Sklodowska-Curie Actions

Tomalla Foundation

Boninchi Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference89 articles.

1. D. Collaboration . The DESI experiment. Part I: Science targeting and survey design. arXiv [Preprint] (2016). http://arxiv.org/abs/1611.00036 (Accessed 20 July 2021).

2. D. Collaboration . The DESI experiment. Part II: Instrument design. arXiv [Preprint] (2016). http://arxiv.org/abs/1611.00037 (Accessed 20 July 2021).

3. B. Abareshi . Overview of the instrumentation for the dark energy spectroscopic instrument. arXiv [Preprint] (2022). https://arxiv.org/abs/2205.10939 (Accessed 26 May 2022).

4. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph

5. N. Tamura . Prime Focus Spectrograph (PFS) for the Subaru telescope: Overview recent progress and future perspectives. arXiv [Preprint] (2016). http://arxiv.org/abs/1608.01075 (Accessed 12 April 2021). Ground-based and airborne instrumentation for astronomy VI vol. 9908 99081M.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3