Ecoevolutionary processes structure milk microbiomes across the mammalian tree of life

Author:

Keady Mia M.12ORCID,Jimenez Randall R.13ORCID,Bragg Morgan14ORCID,Wagner Jenna C. P.5ORCID,Bornbusch Sally L.16ORCID,Power Michael L.5ORCID,Muletz-Wolz Carly R.1ORCID

Affiliation:

1. Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC 20008

2. Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706

3. Science Team, International Union for Conservation of Nature, 11501 San José, Costa Rica

4. Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030

5. Nutrition Laboratory and Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, National Zoological Park, Washington, DC 20008

6. Department of Nutrition Science, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC 20008

Abstract

Milk production is an ancient adaptation that unites all mammals. Milk contains a microbiome that can contribute to offspring health and microbial-immunological development. We generated a comprehensive milk microbiome dataset (16S rRNA gene) for the class Mammalia, representing 47 species from all placental superorders, to determine processes structuring milk microbiomes. We show that across Mammalia, milk exposes offspring to maternal bacterial and archaeal symbionts throughout lactation. Deterministic processes of environmental selection accounted for 20% of milk microbiome assembly processes; milk microbiomes were similar from mammals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly and indirectly impacted milk microbiomes, with indirect effects being mediated by milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% of milk microbiome assembly processes, which was high compared to mammalian gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high stochasticity and indirect effects, our results of direct dietary effects on milk microbiomes provide support for enteromammary trafficking, representing a mechanism by which bacteria are transferred from the mother’s gut to mammary gland and then to offspring postnatally. The microbial species present in milk reflect both selective pressures and stochastic processes at the host level, exemplifying various ecological and evolutionary factors acting on milk microbiomes, which, in turn, set the stage for offspring health and development.

Funder

Smithsonian Institution

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3