Global gradients in the distribution of animal polyploids

Author:

David Kyle T.1ORCID

Affiliation:

1. Department of Biological Sciences, Auburn University, Auburn, AL 36849

Abstract

Whole genome duplications (WGDs) are one of the most dramatic mutations that can be found in nature. The effects of WGD vary dramatically but can have profound impacts on an organism’s expression, cytotype, and phenotype, altering their evolutionary trajectory as a result. Despite the growing appreciation for the contribution of WGDs in animal evolution, the significant factors influencing how polyploid animal lineages are established and maintained are still not well understood. Many hypotheses have been proposed which predict how climate and environment may influence polyploid incidence and evolution. To test and distinguish between these hypotheses, I assembled a global dataset of polyploid occurrences in three animal clades (Amphibia, Actinopterygii, and Insecta). The dataset encompasses chromosomal, phylogenetic, environmental, and climatic data across 57,905 species in 2,223 terrestrial, freshwater, and marine ecoregions. My analysis reveals a strong latitudinal gradient in all three clades, with the tendency for polyploid taxa to occur more frequently at higher latitudes. Many variables were significant (phylogenetic ANOVA P < 0.05 after Bonferroni correction) between polyploids and diploids across taxa, notably those pertaining to temperature dynamics and glaciation. Glaciation in particular appears to be the most significant driver of polyploidy in animals, as these models had the highest relative likelihoods consistently across clades. These results contribute to a model of evolution wherein the broader genomic toolkit of polyploids facilitates adaptation and ecological resilience, enabling polyploids to colonize new or rapidly changing environments.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3