Long-term depression–inductive stimulation causes long-term potentiation in mouse Purkinje cells with a mutant thyroid hormone receptor

Author:

Ninomiya Ayane1ORCID,Amano Izuki1,Kokubo Michifumi1ORCID,Takatsuru Yusuke2ORCID,Ishii Sumiyasu1,Hirai Hirokazu3ORCID,Hosoi Nobutake3ORCID,Koibuchi Noriyuki1ORCID

Affiliation:

1. Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan

2. Department of Nutrition and Health Sciences, Toyo University, Itakura 374-0193, Japan

3. Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan

Abstract

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)–inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)–PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF–PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca 2+ condition. Confocal calcium imaging revealed that dendritic Ca 2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP 3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism–induced dysfunctions of central nervous system and cerebellum.

Funder

Japan Society for the Promotion of Science KAKENHI

Japan Agency for Medical Research and Development

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3