Chromophore hydrolysis and release from photoactivated rhodopsin in native membranes

Author:

Hong John D.12ORCID,Salom David1,Kochman Michał Andrzej3,Kubas Adam3ORCID,Kiser Philip D.1456ORCID,Palczewski Krzysztof1247ORCID

Affiliation:

1. Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697

2. Department of Chemistry, University of California, Irvine, CA 92697

3. Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland

4. Department of Physiology and Biophysics, University of California, Irvine, CA 92697

5. Department of Clinical Pharmacy Practice, University of California, Irvine, CA 92697

6. Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, 90822

7. Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697

Abstract

For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all- trans -retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11- cis -retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography–mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N -retinylidene-phosphatidylethanolamine ( N -ret-PE) adducts with the released all- trans -retinal, and the reduction of all- trans -retinal to all- trans -retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all- trans -retinal. In the absence of NADPH, free all- trans -retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N -ret-PE (∼40% of total all- trans -retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N -ret-PE formation was highly attenuated by NADPH-dependent reduction of all- trans -retinal to all- trans -retinol. Neither N -ret-PE formation nor all- trans -retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all- trans -retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.

Funder

HHS | NIH | National Eye Institute

HHS | National Institutes of Health

Center for Integrated Healthcare, U.S. Department of Veterans Affairs

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3