Preparation of methanediamine (CH 2 (NH 2 ) 2 )—A precursor to nucleobases in the interstellar medium

Author:

Marks Joshua H.12ORCID,Wang Jia12ORCID,Fortenberry Ryan C.3ORCID,Kaiser Ralf I.12ORCID

Affiliation:

1. Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822

2. W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822

3. Department of Chemistry & Biochemistry, University of Mississippi, MS 38677

Abstract

Although methanediamine (CH 2 (NH 2 ) 2 ) has historically been the subject of theoretical scrutiny, it has never been isolated to date. Here, we report the preparation of methanediamine (CH 2 (NH 2 ) 2 )—the simplest diamine. Low-temperature interstellar analog ices composed of ammonia and methylamine were exposed to energetic electrons which act as proxies for secondary electrons produced in the track of galactic cosmic rays. These experimental conditions, which simulate the conditions within cold molecular clouds, result in radical formation and initiate aminomethyl (ĊH 2 NH 2 ) and amino ( N . H 2 ) radical chemistry. Exploiting tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) to make isomer-specific assignments, methanediamine was identified in the gas phase upon sublimation, while its isomer methylhydrazine (CH 3 NHNH 2 ) was not observed. The molecular formula was confirmed to be CH 6 N 2 through the use of isotopically labeled reactants. Methanediamine is the simplest molecule to contain the NCN moiety and could be a vital intermediate in the abiotic formation of heterocyclic and aromatic systems such as nucleobases, which all contain the NCN moiety.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3