Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes

Author:

Liu Wenyuan1ORCID,Fu Pengbo2ORCID,Zhang Yayun3,Xu Hai3,Wang Hualin2,Xing Mingyang12ORCID

Affiliation:

1. Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, ECUST School of Carbon Neutrality Future Technology, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

2. National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China

3. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Efficient H 2 harvesting from wastewater instead of pure water can minimize fresh water consumption, which is expected to solve the problem of water shortage in H 2 production process and contribute to carbon neutrality in the environmental remediation, but the inevitable electron depletion caused by electron-consuming pollutants will result in an exhausted H 2 evolution reaction (HER) performance. In this paper, by coupling piezocatalysis and advanced oxidation processes (AOPs) by a MoS 2 /Fe 0 /peroxymonosulfate (PMS) ternary system, extensive types of wastewater achieved considerable H 2 generation, which exceeded the yield in pure water with synchronous advanced degradation of organic pollutants. In addition, profiting from the crucial bridging role of PMS, the H 2 yield in nitrobenzene wastewater after the introduction of PMS-based AOPs increased 3.37-fold from 267.7 μmol·g −1 ·h −1 to 901.0 μmol·g −1 ·h −1 because the presence of PMS both thermodynamically benefited MoS 2 piezocatalytic H 2 evolution and eliminated the electron depletion caused by organic pollutants. By this way, the original repressed H 2 evolution performance in substrate of wastewater not only was regained but even showed a significant enhancement than that in pure water (505.7 μmol·g −1 ·h −1 ). Additionally, the cyclonic piezoelectric reactor was preliminarily designed for future industrialization. This strategy provided a valuable path for the recycling of actual wastewater by fuel production and synchronous advanced treatment.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3