Astrocytic engagement of the corticostriatal synaptic cleft is disrupted in a mouse model of Huntington’s disease

Author:

Villanueva Carlos Benitez1ORCID,Stephensen Hans J. T.12ORCID,Mokso Rajmund3ORCID,Benraiss Abdellatif4,Sporring Jon2ORCID,Goldman Steven A.14ORCID

Affiliation:

1. Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N 2200, Denmark

2. Department of Computer Science, University of Copenhagen, Faculty of Science, Copenhagen N 2200, Denmark

3. Faculty of Engineering, Division of Solid Mechanics, Lund University, Lund 22100, Sweden

4. Center for Translational Neuroscience, Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642

Abstract

Astroglial dysfunction contributes to the pathogenesis of Huntington’s disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K + that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.

Funder

Lundbeckfonden

Novo Nordisk Fonden

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3