Mfsd2a utilizes a flippase mechanism to mediate omega-3 fatty acid lysolipid transport

Author:

Chua Geok-Lin1ORCID,Tan Bryan C.1ORCID,Loke Randy Y. J.1ORCID,He Menglan1ORCID,Chin Cheen-Fei1ORCID,Wong Bernice H.1ORCID,Kuk Alvin C. Y.1ORCID,Ding Mei23ORCID,Wenk Markus R.23,Guan Lan4ORCID,Torta Federico23ORCID,Silver David L.1ORCID

Affiliation:

1. Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore 169857, Singapore

2. Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore

3. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore

4. Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430

Abstract

Major Facilitator Superfamily Domain containing 2a (Mfsd2a) is a sodium-dependent lysophosphatidylcholine (LPC) transporter expressed at the blood–brain barrier that constitutes the main pathway by which the brain obtains omega-3 fatty acids, such as docosahexanoic acid. Mfsd2a deficiency in humans results in severe microcephaly, underscoring the importance of LPC transport by Mfsd2a for brain development. Biochemical studies and recent cryo-electron microscopy (cryo-EM) structures of Mfsd2a bound to LPC suggest that Mfsd2a transports LPC via an alternating access mechanism between outward-facing and inward-facing conformational states in which the LPC inverts during transport between the outer and inner leaflet of a membrane. However, direct biochemical evidence of flippase activity by Mfsd2a has not been demonstrated and it is not understood how Mfsd2a could invert LPC between the outer and inner leaflet of the membrane in a sodium-dependent manner. Here, we established a unique in vitro assay using recombinant Mfsd2a reconstituted in liposomes that exploits the ability of Mfsd2a to transport lysophosphatidylserine (LPS) coupled with a small molecule LPS binding fluorophore that allowed for monitoring of directional flipping of the LPS headgroup from the outer to the inner liposome membrane. Using this assay, we demonstrate that Mfsd2a flips LPS from the outer to the inner leaflet of a membrane bilayer in a sodium-dependent manner. Furthermore, using cryo-EM structures as guides together with mutagenesis and a cell-based transport assay, we identify amino acid residues important for Mfsd2a activity that likely constitute substrate interaction domains. These studies provide direct biochemical evidence that Mfsd2a functions as a lysolipid flippase.

Funder

National Research Foundation Singapore

Ministry of Health, Singapore

Ministry of Education, Singapore

Human Frontiers Science Program

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3