Neurotoxicity associated with dual actions of homocysteine at the N -methyl- d -aspartate receptor

Author:

Lipton Stuart A.1,Kim Won-Ki1,Choi Yun-Beom1,Kumar Shanta1,D’Emilia Danielle M.1,Rayudu Posina V.1,Arnelle Derrick R.1,Stamler Jonathan S.1

Affiliation:

1. Laboratory of Cellular and Molecular Neuroscience, Children’s Hospital, and Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Enders Building, Suite 361, Boston, MA 02115; Department of Pharmacology, Ewha Medical School, 911–1 Mok-6-dong, Yangchun-ku, Seoul 158–750, Republic of Korea; and Divisions of Pulmonary and Cardiovascular Medicine and Department of Cell Biology, Duke University Medical Center, Box 2610, Durham, NC 27710

Abstract

Severely elevated levels of total homocysteine (approximately millimolar) in the blood typify the childhood disease homocystinuria, whereas modest levels (tens of micromolar) are commonly found in adults who are at increased risk for vascular disease and stroke. Activation of the coagulation system and adverse effects of homocysteine on the endothelium and vessel wall are believed to underlie disease pathogenesis. Here we show that homocysteine acts as an agonist at the glutamate binding site of the N -methyl- d -aspartate receptor, but also as a partial antagonist of the glycine coagonist site. With physiological levels of glycine, neurotoxic concentrations of homocysteine are on the order of millimolar. However, under pathological conditions in which glycine levels in the nervous system are elevated, such as stroke and head trauma, homocysteine’s neurotoxic (agonist) attributes at 10–100 μM levels outweigh its neuroprotective (antagonist) activity. Under these conditions neuronal damage derives from excessive Ca 2+ influx and reactive oxygen generation. Accordingly, homocysteine neurotoxicity through overstimulation of N -methyl- d -aspartate receptors may contribute to the pathogenesis of both homocystinuria and modest hyperhomocysteinemia.

Publisher

Proceedings of the National Academy of Sciences

Cited by 776 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3