Author:
Ludwig Peter,Bishop Shawn,Egli Ramon,Chernenko Valentyna,Deneva Boyana,Faestermann Thomas,Famulok Nicolai,Fimiani Leticia,Gómez-Guzmán José Manuel,Hain Karin,Korschinek Gunther,Hanzlik Marianne,Merchel Silke,Rugel Georg
Abstract
Massive stars (M≳10 M⊙), which terminate their evolution as core-collapse supernovae, are theoretically predicted to eject >10−5M⊙ of the radioisotope 60Fe (half-life 2.61 Ma). If such an event occurs sufficiently close to our solar system, traces of the supernova debris could be deposited on Earth. Herein, we report a time-resolved 60Fe signal residing, at least partially, in a biogenic reservoir. Using accelerator mass spectrometry, this signal was found through the direct detection of live 60Fe atoms contained within secondary iron oxides, among which are magnetofossils, the fossilized chains of magnetite crystals produced by magnetotactic bacteria. The magnetofossils were chemically extracted from two Pacific Ocean sediment drill cores. Our results show that the 60Fe signal onset occurs around 2.6 Ma to 2.8 Ma, near the lower Pleistocene boundary, terminates around 1.7 Ma, and peaks at about 2.2 Ma.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Proceedings of the National Academy of Sciences
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献