Author:
Yu Kilho,Park Byoungwook,Kim Geunjin,Kim Chang-Hyun,Park Sungjun,Kim Jehan,Jung Suhyun,Jeong Soyeong,Kwon Sooncheol,Kang Hongkyu,Kim Junghwan,Yoon Myung-Han,Lee Kwanghee
Abstract
Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes.
Funder
National Research Foundation of Korea
National Research Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献