Evaporation-induced stimulation of bacterial osmoregulation for electrical assessment of cell viability

Author:

Ebrahimi Aida,Alam Muhammad Ashraful

Abstract

Bacteria cells use osmoregulatory proteins as emergency valves to respond to changes in the osmotic pressure of their external environment. The existence of these emergency valves has been known since the 1960s, but they have never been used as the basis of a viability assay to tell dead bacteria cells apart from live ones. In this paper, we show that osmoregulation provides a much faster, label-free assessment of cell viability compared with traditional approaches that rely on cell multiplication (growth) to reach a detectable threshold. The cells are confined in an evaporating droplet that serves as a dynamic microenvironment. Evaporation-induced increase in ionic concentration is reflected in a proportional increase of the droplet’s osmotic pressure, which in turn, stimulates the osmoregulatory response from the cells. By monitoring the time-varying electrical conductance of evaporating droplets, bacterial cells are identified within a few minutes compared with several hours in growth-based methods. To show the versatility of the proposed method, we show detection of WT and genetically modified nonhalotolerant cells (Salmonella typhimurium) and dead vs. live differentiation of nonhalotolerant (such as Escherichia coli DH5α) and halotolerant cells (such as Staphylococcus epidermidis). Unlike the growth-based techniques, the assay time of the proposed method is independent of cell concentration or the bacteria type. The proposed label-free approach paves the road toward realization of a new class of real time, array-formatted electrical sensors compatible with droplet microfluidics for laboratory on a chip applications.

Funder

National Science Foundation

Graduate School, Purdue University

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3