Abstract
Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.
Funder
National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Reference56 articles.
1. The Effects of Doubling the CO2Concentration on the climate of a General Circulation Model
2. Collins M (2013) Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed Stocker TF (Cambridge Univ Press, Cambridge, UK), pp 1029–1136.
3. Global warming and 21st century drying
4. Increasing drought under global warming in observations and models;Dai;Nat Clim Change,2013
5. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations
Cited by
424 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献