Author:
Attaiech Laetitia,Boughammoura Aïda,Brochier-Armanet Céline,Allatif Omran,Peillard-Fiorente Flora,Edwards Ross A.,Omar Ayat R.,MacMillan Andrew M.,Glover Mark,Charpentier Xavier
Abstract
A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogenLegionella pneumophila. We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterizedtrans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assisttrans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.
Funder
Fondation pour la Recherche Médicale
Agence Nationale de la Recherche
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Gouvernement du Canada | Canadian Institutes of Health Research
Centre National de la Recherche Scientifique
Publisher
Proceedings of the National Academy of Sciences
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献