Herpes simplex virus ICP27 regulates alternative pre-mRNA polyadenylation and splicing in a sequence-dependent manner

Author:

Tang Shuang,Patel Amita,Krause Philip R.ORCID

Abstract

The herpes simplex virus (HSV) infected cell culture polypeptide 27 (ICP27) protein is essential for virus infection of cells. Recent studies suggested that ICP27 inhibits splicing in a gene-specific manner via an unknown mechanism. Here, RNA-sequencing revealed that ICP27 not only inhibits splicing of certain introns in <1% of cellular genes, but also can promote use of alternative 5′ splice sites. In addition, ICP27 induced expression of pre-mRNAs prematurely cleaved and polyadenylated from cryptic polyadenylation signals (PAS) located in intron 1 or 2 of ∼1% of cellular genes. These previously undescribed prematurely cleaved and polyadenylated pre-mRNAs, some of which contain novel ORFs, were typically intronless, <2 Kb in length, expressed early during viral infection, and efficiently exported to cytoplasm. Sequence analysis revealed that ICP27-targeted genes are GC-rich (as are HSV genes), contain cytosine-rich sequences near the 5′ splice site, and have suboptimal splice sites in the impacted intron, suggesting that a common mechanism is shared between ICP27-mediated alternative polyadenylation and splicing. Optimization of splice site sequences or mutation of nearby cytosines eliminated ICP27-mediated splicing inhibition, and introduction of C-rich sequences to an ICP27-insensitive splicing reporter conferred this phenotype, supporting the inference that specific gene sequences confer susceptibility to ICP27. Although HSV is the first virus and ICP27 is the first viral protein shown to activate cryptic PASs in introns, we suspect that other viruses and cellular genes also encode this function.

Funder

HHS | U.S. Food and Drug Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3