Circadian rhythms identified inCaenorhabditis elegansby in vivo long-term monitoring of a bioluminescent reporter

Author:

Goya María Eugenia,Romanowski Andrés,Caldart Carlos S.,Bénard Claire Y.,Golombek Diego A.

Abstract

Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems—including mice, flies, fungi, plants, and bacteria—have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock ofCaenorhabditis eleganshave remained largely elusive. Here we report robust molecular circadian rhythms inC.elegansrecorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activatedlet-60Ras (sur-5) gene, we show in both population and single-nematode assays thatC.elegansexpresses ∼24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light onC.eleganscircadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode.

Funder

Agencia Nacional de Promoción Científica (ANPCyT

Universidad Nacional de Quilmes

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference66 articles.

1. The Implications of Multiple Circadian Clock Origins

2. Circadian rhythms from multiple oscillators: lessons from diverse organisms

3. Molecular components of the mammalian circadian clock

4. Daan S Aschoff J (2011) The entrainment of circadian systems. Circadian Clocks, eds Takahashi JS Turek FW Moore RY (Kluwer Academic, Plenum, New York), pp 7–34.

5. Molecular Bases of Circadian Rhythms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3