Topic modeling for untargeted substructure exploration in metabolomics

Author:

van der Hooft Justin Johan JoziasORCID,Wandy Joe,Barrett Michael P.,Burgess Karl E. V.,Rogers SimonORCID

Abstract

The potential of untargeted metabolomics to answer important questions across the life sciences is hindered because of a paucity of computational tools that enable extraction of key biochemically relevant information. Available tools focus on using mass spectrometry fragmentation spectra to identify molecules whose behavior suggests they are relevant to the system under study. Unfortunately, fragmentation spectra cannot identify molecules in isolation but require authentic standards or databases of known fragmented molecules. Fragmentation spectra are, however, replete with information pertaining to the biochemical processes present, much of which is currently neglected. Here, we present an analytical workflow that exploits all fragmentation data from a given experiment to extract biochemically relevant features in an unsupervised manner. We demonstrate that an algorithm originally used for text mining, latent Dirichlet allocation, can be adapted to handle metabolomics datasets. Our approach extracts biochemically relevant molecular substructures (“Mass2Motifs”) from spectra as sets of co-occurring molecular fragments and neutral losses. The analysis allows us to isolate molecular substructures, whose presence allows molecules to be grouped based on shared substructures regardless of classical spectral similarity. These substructures, in turn, support putative de novo structural annotation of molecules. Combining this spectral connectivity to orthogonal correlations (e.g., common abundance changes under system perturbation) significantly enhances our ability to provide mechanistic explanations for biological behavior.

Funder

Biotechnology and Biological Sciences Research Council

Wellcome Trust

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3