Protein structural ensembles are revealed by redefining X-ray electron density noise

Author:

Lang P. Therese,Holton James M.,Fraser James S.,Alber Tom

Abstract

To increase the power of X-ray crystallography to determine not only the structures but also the motions of biomolecules, we developed methods to address two classic crystallographic problems: putting electron density maps on the absolute scale of e3 and calculating the noise at every point in the map. We find that noise varies with position and is often six to eight times lower than thresholds currently used in model building. Analyzing the rescaled electron density maps from 485 representative proteins revealed unmodeled conformations above the estimated noise for 45% of side chains and a previously hidden, low-occupancy inhibitor of HIV capsid protein. Comparing the electron density maps in the free and nucleotide-bound structures of three human protein kinases suggested that substrate binding perturbs distinct intrinsic allosteric networks that link the active site to surfaces that recognize regulatory proteins. These results illustrate general approaches to identify and analyze alternative conformations, low-occupancy small molecules, solvent distributions, communication pathways, and protein motions.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3