Emerging long-term trends and interdecadal cycles in Antarctic polynyas

Author:

Duffy Grant A.1ORCID,Montiel Fabien2,Purich Ariaan3,Fraser Ceridwen I.1ORCID

Affiliation:

1. Department of Marine Science, University of Otago, Dunedin 9054, New Zealand

2. Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand

3. School of Earth, Atmosphere and Environment, and Australian Research Council Special Research Initiative for Securing Antarctica’s Environmental Future, Monash University, Clayton, Kulin Nations, VIC 3800, Australia

Abstract

Polynyas, areas of open water embedded within sea ice, are a key component of ocean–atmosphere interactions that act as hotspots of sea-ice production, bottom-water formation, and primary productivity. The specific drivers of polynya dynamics remain, however, elusive and coupled climate models struggle to replicate Antarctic polynya activity. Here, we leverage a 44-y time series of Antarctic sea ice to elucidate long-term trends. We identify Antarctic-wide linear increases and a hitherto undescribed cyclical pattern of polynya activity across the Ross Sea region that potentially arises from interactions between the Amundsen Sea Low and Southern Annular Mode. While their specific drivers remain unknown, identifying these emerging patterns augments our capacity to understand the processes that influence sea ice. As we enter a potentially new age of Antarctic sea ice, this advance in understanding will, in turn, lead to more accurate predictions of environmental change, and its implications for Antarctic ecosystems.

Funder

Ministry of Business, Innovation and Employment

Royal Society Te Apārangi

Department of Education and Training | Australian Research Council

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antarctic benthic ecological change;Nature Reviews Earth & Environment;2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3