Out-of-equilibrium interactions and collective locomotion of colloidal spheres with squirming of nematoelastic multipoles

Author:

Senyuk Bohdan12,Wu Jin-Sheng1ORCID,Smalyukh Ivan I.1234

Affiliation:

1. Department of Physics, University of Colorado, Boulder, CO 80309

2. International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan

3. Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309

4. Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO 80309

Abstract

Many living and artificial systems show similar emergent behavior and collective motions on different scales, starting from swarms of bacteria to synthetic active particles, herds of mammals, and crowds of people. What all these systems often have in common is that new collective properties like flocking emerge from interactions between individual self-propelled or driven units. Such systems are naturally out-of-equilibrium and propel at the expense of consumed energy. Mimicking nature by making self-propelled or externally driven particles and studying their individual and collective motility may allow for deeper understanding of physical underpinnings behind collective motion of large groups of interacting objects or beings. Here, using a soft matter system of colloids immersed into a liquid crystal, we show that resulting so-called nematoelastic multipoles can be set into a bidirectional locomotion by external oscillating electric fields. Out-of-equilibrium elastic interactions between such colloidal objects lead to collective flock-like behaviors emerging from time-varying elasticity-mediated interactions between externally driven propelling particles. Repulsive elastic interactions in the equilibrium state can be turned into attractive interactions in the out-of-equilibrium state under applied external electric fields. We probe this behavior at different number densities of colloidal particles and show that particles in dense dispersions collectively select the same direction of a coherent motion due to elastic interactions between near neighbors. In our experimentally implemented design, their motion is highly ordered and without clustering or jamming often present in other colloidal transport systems, which is promising for technological and fundamental-science applications, like nano-cargo transport, out-of-equilibrium assembly, and microrobotics.

Publisher

Proceedings of the National Academy of Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3