Feedforward and feedback mechanisms cooperatively regulate rapid experience-dependent response adaptation in a single thermosensory neuron type

Author:

Hill Tyler J.1,Sengupta Piali1ORCID

Affiliation:

1. Department of Biology, Brandeis University, Waltham, MA 02454

Abstract

Sensory adaptation allows neurons to adjust their sensitivity and responses based on recent experience. The mechanisms that mediate continuous adaptation to stimulus history over seconds- to hours-long timescales, and whether these mechanisms can operate within a single sensory neuron type, are unclear. The single pair of AFD thermosensory neurons in Caenorhabditis elegans exhibits experience-dependent plasticity in their temperature response thresholds on both minutes- and hours-long timescales upon a temperature upshift. While long-term response adaptation requires changes in gene expression in AFD, the mechanisms driving rapid response plasticity are unknown. Here, we show that rapid thermosensory response adaptation in AFD is mediated via cGMP and calcium-dependent feedforward and feedback mechanisms operating at the level of primary thermotransduction. We find that either of two thermosensor receptor guanylyl cyclases (rGCs) alone is sufficient to drive rapid adaptation, but that each rGC drives adaptation at different rates. rGC-driven adaptation is mediated in part via phosphorylation of their intracellular domains, and calcium-dependent feedback regulation of basal cGMP levels via a neuronal calcium sensor protein. In turn, cGMP levels feedforward via cGMP-dependent protein kinases to phosphorylate a specific subunit of the cGMP-gated thermotransduction channel to further regulate rapid adaptation. Our results identify multiple molecular pathways that act in AFD to ensure rapid adaptation to a temperature change and indicate that the deployment of both transcriptional and nontranscriptional mechanisms within a single sensory neuron type can contribute to continuous sensory adaptation.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3