A CUC1/auxin genetic module links cell polarity to patterned tissue growth and leaf shape diversity in crucifer plants

Author:

Hu Zi-Liang1ORCID,Wilson-Sánchez David1ORCID,Bhatia Neha1,Rast-Somssich Madlen I.1,Wu Anhui1,Vlad Daniela1,McGuire Liam1ORCID,Nikolov Lachezar A.1,Laufs Patrick2ORCID,Gan Xiangchao1,Laurent Stefan1ORCID,Runions Adam3ORCID,Tsiantis Miltos1

Affiliation:

1. Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany

2. Université Paris-Saclay, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France

3. Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

How tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between Arabidopsis thaliana , which has simple leaves, and its relative Cardamine hirsuta that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in C. hirsuta (ChCUC1) is a key determinant of leaf shape differences between the two species. Through inducible genetic perturbations, time-lapse imaging of growth, and computational modeling, we find that ChCUC1 provides instructive input into auxin-based leaf margin patterning. This input arises via transcriptional regulation of multiple auxin homeostasis components, including direct activation of WAG kinases that are known to regulate the polarity of PIN-FORMED auxin transporters. Thus, we have uncovered a mechanism that bridges biological scales by linking spatially distributed and species-specific transcription factor expression to cell-level polarity and growth, to shape diverse leaf forms.

Funder

Deutsche Forschungsgemeinschaft

Max Planck Society

International Max Planck Research School

European Molecular Biology Organization Long-term fellowship

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3