Immunological consequences of intragenus conservation ofMycobacterium tuberculosisT-cell epitopes

Author:

Lindestam Arlehamn Cecilia S.,Paul Sinu,Mele Federico,Huang Charlie,Greenbaum Jason A.,Vita Randi,Sidney John,Peters Bjoern,Sallusto Federica,Sette Alessandro

Abstract

A previous unbiased genome-wide analysis of CD4Mycobacterium tuberculosis(MTB) recognition using peripheral blood mononuclear cells from individuals with latent MTB infection (LTBI) or nonexposed healthy controls (HCs) revealed that certain MTB sequences were unexpectedly recognized by HCs. In the present study, it was found that, based on their pattern of reactivity, epitopes could be divided into LTBI-specific, mixed reactivity, and HC-specific categories. This pattern corresponded to sequence conservation in nontuberculous mycobacteria (NTMs), suggesting environmental exposure as an underlying cause of differential reactivity. LTBI-specific epitopes were found to be hyperconserved, as previously reported, whereas the opposite was true for NTM conserved epitopes, suggesting that intragenus conservation also influences host pathogen adaptation. The biological relevance of this observation was demonstrated further by several observations. First, the T cells elicited by MTB/NTM cross-reactive epitopes in HCs were found mainly in a CCR6+CXCR3+memory subset, similar to findings in LTBI individuals. Thus, both MTB and NTM appear to elicit a phenotypically similar T-cell response. Second, T cells reactive to MTB/NTM-conserved epitopes responded to naturally processed epitopes from MTB and NTMs, whereas T cells reactive to MTB-specific epitopes responded only to MTB. Third, cross-reactivity could be translated to antigen recognition. Several MTB candidate vaccine antigens were cross-reactive, but others were MTB-specific. Finally, NTM-specific epitopes that elicit T cells that recognize NTMs but not MTB were identified. These epitopes can be used to characterize T-cell responses to NTMs, eliminating the confounding factor of MTB cross-recognition and providing insights into vaccine design and evaluation.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

European Commission

EC | European Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3