Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine

Author:

Pais June E.,Dai Nan,Tamanaha Esta,Vaisvila Romualdas,Fomenkov Alexey I.,Bitinaite Jurate,Sun Zhiyi,Guan Shengxi,Corrêa Ivan R.,Noren Christopher J.,Cheng Xiaodong,Roberts Richard J.,Zheng Yu,Saleh Lana

Abstract

Modified DNA bases in mammalian genomes, such as 5-methylcytosine (5mC) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of 5mC to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like 5mC oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both 5mC (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine (5fU) and 5-carboxyuridine (5caU) in vitro. Mutagenesis studies reveal a delicate balance between choice of 5mC or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to 5mCpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in 5mC sequencing technologies such as single molecule, real-time sequencing to map 5mC in bacterial genomes at base resolution.

Funder

New England Biolabs

National Institute of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3