Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans

Author:

Morris Christopher J.,Yang Jessica N.,Garcia Joanna I.,Myers Samantha,Bozzi Isadora,Wang Wei,Buxton Orfeu M.,Shea Steven A.,Scheer Frank A. J. L.

Abstract

Glucose tolerance is lower in the evening and at night than in the morning. However, the relative contribution of the circadian system vs. the behavioral cycle (including the sleep/wake and fasting/feeding cycles) is unclear. Furthermore, although shift work is a diabetes risk factor, the separate impact on glucose tolerance of the behavioral cycle, circadian phase, and circadian disruption (i.e., misalignment between the central circadian pacemaker and the behavioral cycle) has not been systematically studied. Here we show—by using two 8-d laboratory protocols—in healthy adults that the circadian system and circadian misalignment have distinct influences on glucose tolerance, both separate from the behavioral cycle. First, postprandial glucose was 17% higher (i.e., lower glucose tolerance) in the biological evening (8:00 PM) than morning (8:00 AM; i.e., a circadian phase effect), independent of the behavioral cycle effect. Second, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial glucose by 6%. Third, these variations in glucose tolerance appeared to be explained, at least in part, by different mechanisms: during the biological evening by decreased pancreatic β-cell function (27% lower early-phase insulin) and during circadian misalignment presumably by decreased insulin sensitivity (elevated postprandial glucose despite 14% higher late-phase insulin) without change in early-phase insulin. We explored possible contributing factors, including changes in polysomnographic sleep and 24-h hormonal profiles. We demonstrate that the circadian system importantly contributes to the reduced glucose tolerance observed in the evening compared with the morning. Separately, circadian misalignment reduces glucose tolerance, providing a mechanism to help explain the increased diabetes risk in shift workers.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

National Aeronautics and Space Administration

HHS | NIH | National Institute on Aging

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3