Discovery of multiple hidden allosteric sites by combining Markov state models and experiments

Author:

Bowman Gregory R.,Bolin Eric R.,Hart Kathryn M.,Maguire Brendan C.,Marqusee Susan

Abstract

The discovery of drug-like molecules that bind pockets in proteins that are not present in crystallographic structures yet exert allosteric control over activity has generated great interest in designing pharmaceuticals that exploit allosteric effects. However, there have only been a small number of successes, so the therapeutic potential of these pockets—called hidden allosteric sites—remains unclear. One challenge for assessing their utility is that rational drug design approaches require foreknowledge of the target site, but most hidden allosteric sites are only discovered when a small molecule is found to stabilize them. We present a means of decoupling the identification of hidden allosteric sites from the discovery of drugs that bind them by drawing on new developments in Markov state modeling that provide unprecedented access to microsecond- to millisecond-timescale fluctuations of a protein’s structure. Visualizing these fluctuations allows us to identify potential hidden allosteric sites, which we then test via thiol labeling experiments. Application of these methods reveals multiple hidden allosteric sites in an important antibiotic target—TEM-1 β-lactamase. This result supports the hypothesis that there are many as yet undiscovered hidden allosteric sites and suggests our methodology can identify such sites, providing a starting point for future drug design efforts. More generally, our results demonstrate the power of using Markov state models to guide experiments.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3