Author:
Pangršič Tina,Gabrielaitis Mantas,Michanski Susann,Schwaller Beat,Wolf Fred,Strenzke Nicola,Moser Tobias
Abstract
EF-hand Ca2+-binding proteins are thought to shape the spatiotemporal properties of cellular Ca2+ signaling and are prominently expressed in sensory hair cells in the ear. Here, we combined genetic disruption of parvalbumin-α, calbindin-D28k, and calretinin in mice with patch-clamp recording, in vivo physiology, and mathematical modeling to study their role in Ca2+ signaling, exocytosis, and sound encoding at the synapses of inner hair cells (IHCs). IHCs lacking all three proteins showed excessive exocytosis during prolonged depolarizations, despite enhanced Ca2+-dependent inactivation of their Ca2+ current. Exocytosis of readily releasable vesicles remained unchanged, in accordance with the estimated tight spatial coupling of Ca2+ channels and release sites (effective “coupling distance” of 17 nm). Substitution experiments with synthetic Ca2+ chelators indicated the presence of endogenous Ca2+ buffers equivalent to 1 mM synthetic Ca2+-binding sites, approximately half of them with kinetics as fast as 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Synaptic sound encoding was largely unaltered, suggesting that excess exocytosis occurs extrasynaptically. We conclude that EF-hand Ca2+ buffers regulate presynaptic IHC function for metabolically efficient sound coding.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Alexander von Humboldt-Stiftung
Publisher
Proceedings of the National Academy of Sciences
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献