Author:
Swierk John R.,Méndez-Hernández Dalvin D.,McCool Nicholas S.,Liddell Paul,Terazono Yuichi,Pahk Ian,Tomlin John J.,Oster Nolan V.,Moore Thomas A.,Moore Ana L.,Gust Devens,Mallouk Thomas E.
Abstract
Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO2 solar cell. We report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. The free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed.
Funder
U.S. Department of Energy
Publisher
Proceedings of the National Academy of Sciences
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献