CD47 regulates the phagocytic clearance and replication of the Plasmodium yoelii malaria parasite

Author:

Banerjee Rajdeep,Khandelwal Sanjay,Kozakai Yukiko,Sahu Bikash,Kumar Sanjai

Abstract

Several Plasmodium species exhibit a strong age-based preference for the red blood cells (RBC) they infect, which in turn is a major determinant of disease severity and pathogenesis. The molecular basis underlying this age constraint on the use of RBC and its influence on parasite burden is poorly understood. CD47 is a marker of self on most cells, including RBC, which, in conjunction with signal regulatory protein alpha (expressed on macrophages), prevents the clearance of cells by the immune system. In this report, we have investigated the role of CD47 on the growth and survival of nonlethal Plasmodium yoelii 17XNL (PyNL) malaria in C57BL/6 mice. By using a quantitative biotin-labeling procedure and a GFP-expressing parasite, we demonstrate that PyNL parasites preferentially infect high levels of CD47 (CD47hi)-expressing young RBC. Importantly, C57BL/6 CD47−/− mice were highly resistant to PyNL infection and developed a 9.3-fold lower peak parasitemia than their wild-type (WT) counterparts. The enhanced resistance to malaria observed in CD47−/− mice was associated with a higher percentage of splenic F4/80+ cells, and these cells had a higher percentage of phagocytized parasitized RBC than infected WT mice during the acute phase of infection, when parasitemia was rapidly rising. Furthermore, injection of CD47-neutralizing antibody caused a significant reduction in parasite burden in WT C57BL/6 mice. Together, these results strongly suggest that CD47hi young RBC may provide a shield to the malaria parasite from clearance by the phagocytic cells, which may be an immune escape mechanism used by Plasmodium parasites that preferentially infect young RBC.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3