Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts

Author:

McKain Kathryn,Down Adrian,Raciti Steve M.,Budney John,Hutyra Lucy R.,Floerchinger Cody,Herndon Scott C.,Nehrkorn Thomas,Zahniser Mark S.,Jackson Robert B.,Phillips Nathan,Wofsy Steven C.

Abstract

Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference40 articles.

1. Myhre G (2013) Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed Stocker TF (Cambridge Univ Press, Cambridge, UK), pp 659–740

2. Linking ozone pollution and climate change: The case for controlling methane;Fiore;Geophys Res Lett,2002

3. Ciais P (2013) Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed Stocker TF (Cambridge Univ Press, Cambridge, UK), pp 465–570

4. Global health benefits of mitigating ozone pollution with methane emission controls

5. The White House (2014) Climate Action Plan: Strategy to Reduce Methane Emissions. Available at www.whitehouse.gov/sites/default/files/strategy_to_reduce_methane_emissions_2014-03-28_final.pdf. Accessed March 28, 2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3