Water-like solvation thermodynamics in a spherically symmetric solvent model with two characteristic lengths

Author:

Buldyrev Sergey V.,Kumar Pradeep,Debenedetti Pablo G.,Rossky Peter J.,Stanley H. Eugene

Abstract

We examine by molecular dynamics simulation the solubility of small apolar solutes in a solvent whose particles interact via the Jagla potential, a spherically symmetric ramp potential with two characteristic lengths: an impenetrable hard core and a penetrable soft core. The Jagla fluid has been recently shown to possess water-like structural, dynamic, and thermodynamic anomalies. We find that the solubility exhibits a minimum with respect to temperature at fixed pressure and thereby show that the Jagla fluid also displays water-like solvation thermodynamics. We further find low-temperature swelling of a hard-sphere chain dissolved in the Jagla fluid and relate this phenomenon to cold unfolding of globular proteins. Our results are consistent with the possibility that the presence of two characteristic lengths in the Jagla potential is a key feature of water-like solvation thermodynamics. The penetrable core becomes increasingly important at low temperatures, which favors the formation of low-density, open structures in the Jagla solvent.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference64 articles.

1. Franks F (2000) Water: A Matrix for Life (Royal Society of Chemistry, Cambridge, UK), 2nd Ed.

2. Eisenberg D Kauzmann W (1969) The Structure and Properties of Water (Oxford Univ Press, New York).

3. Supercooled and glassy water

4. Supercooled and Glassy Water

5. Tanford C (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes (Wiley, New York), 2nd Ed.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3