Load-dependent destabilization of the γ-rotor shaft in FOF1 ATP synthase revealed by hydrogen/deuterium-exchange mass spectrometry

Author:

Vahidi Siavash,Bi Yumin,Dunn Stanley D.,Konermann Lars

Abstract

FoF1 is a membrane-bound molecular motor that uses proton-motive force (PMF) to drive the synthesis of ATP from ADP and Pi. Reverse operation generates PMF via ATP hydrolysis. Catalysis in either direction involves rotation of the γε shaft that connects the α3β3 head and the membrane-anchored cn ring. X-ray crystallography and other techniques have provided insights into the structure and function of FoF1 subcomplexes. However, interrogating the conformational dynamics of intact membrane-bound FoF1 during rotational catalysis has proven to be difficult. Here, we use hydrogen/deuterium exchange mass spectrometry to probe the inner workings of FoF1 in its natural membrane-bound state. A pronounced destabilization of the γ C-terminal helix during hydrolysis-driven rotation was observed. This behavior is attributed to torsional stress in γ, arising from γ⋅⋅⋅α3β3 interactions that cause resistance during γ rotation within the apical bearing. Intriguingly, we find that destabilization of γ occurs only when FoF1 operates against a PMF-induced torque; the effect disappears when PMF is eliminated by an uncoupler. This behavior resembles the properties of automotive engines, where bearings inflict greater forces on the crankshaft when operated under load than during idling.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3