Author:
Nyerges Ákos,Csörgő Bálint,Nagy István,Bálint Balázs,Bihari Péter,Lázár Viktória,Apjok Gábor,Umenhoffer Kinga,Bogos Balázs,Pósfai György,Pál Csaba
Abstract
Currently available tools for multiplex bacterial genome engineering are optimized for a few laboratory model strains, demand extensive prior modification of the host strain, and lead to the accumulation of numerous off-target modifications. Building on prior development of multiplex automated genome engineering (MAGE), our work addresses these problems in a single framework. Using a dominant-negative mutant protein of the methyl-directed mismatch repair (MMR) system, we achieved a transient suppression of DNA repair inEscherichia coli, which is necessary for efficient oligonucleotide integration. By integrating all necessary components into a broad-host vector, we developed a new workflow we term pORTMAGE. It allows efficient modification of multiple loci, without any observable off-target mutagenesis and prior modification of the host genome. Because of the conserved nature of the bacterial MMR system, pORTMAGE simultaneously allows genome editing and mutant library generation in other biotechnologically and clinically relevant bacterial species. Finally, we applied pORTMAGE to study a set of antibiotic resistance-conferring mutations inSalmonella entericaandE. coli. Despite over 100 million y of divergence between the two species, mutational effects remained generally conserved. In sum, a single transformation of a pORTMAGE plasmid allows bacterial species of interest to become an efficient host for genome engineering. These advances pave the way toward biotechnological and therapeutic applications. Finally, pORTMAGE allows systematic comparison of mutational effects and epistasis across a wide range of bacterial species.
Funder
Országos Tudományos Kutatási Alapprogramok
EC | European Research Council
Wellcome Trust
Lendulet Program of the Hungarian Academy of Sciences
Hungarian Academy of Sciences Postdoctoral Fellowship Program
Janos Bolyai Scholarship of the Hungarian Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Cited by
196 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献