Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells

Author:

Li Jian,Deffieu Maika S.,Lee Peter L.,Saha Piyali,Pfeffer Suzanne R.

Abstract

Lysosomes are lined with a glycocalyx that protects the limiting membrane from the action of degradative enzymes. We tested the hypothesis that Niemann-Pick type C 1 (NPC1) protein aids the transfer of low density lipoprotein-derived cholesterol across this glycocalyx. A prediction of this model is that cells will be less dependent upon NPC1 if their glycocalyx is decreased in density. Lysosome cholesterol content was significantly lower after treatment of NPC1-deficient human fibroblasts with benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside, an inhibitor of O-linked glycosylation. Direct biochemical measurement of cholesterol showed that lysosomes purified from NPC1-deficient fibroblasts contained at least 30% less cholesterol when O-linked glycosylation was blocked. As an independent means to modify protein glycosylation, we used Chinese hamster ovary ldl-D cells defective in UDP-Gal/UDP-GalNAc 4-epimerase in which N- and O-linked glycosylation can be controlled. CRISPR generated, NPC1-deficient ldl-D cells supplemented with galactose accumulated more cholesterol than those in which sugar addition was blocked. In the absence of galactose supplementation, NPC1-deficient ldl-D cells also transported more cholesterol from lysosomes to the endoplasmic reticulum, as monitored by an increase in cholesteryl [14C]-oleate levels. These experiments support a model in which NPC1 protein functions to transfer cholesterol past a lysosomal glycocalyx.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Ara Parseghian Medical Research Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3