Self-similar Rayleigh–Taylor mixing with accelerations varying in time and space

Author:

Abarzhi Snezhana I.1ORCID,Sreenivasan Katepalli R.234ORCID

Affiliation:

1. Department of Mathematics and Statistics, The University of Western Australia, Perth, WA 6009, Australia

2. Tandon School of Engineering, New York University, New York, NY 11201

3. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

4. Department of Physics, New York University, New York, NY 10012

Abstract

As a ubiquitous paradigm of instabilities and mixing that occur in instances as diverse as supernovae, plasma fusion, oil recovery, and nanofabrication, the Rayleigh–Taylor (RT) problem is rightly regarded as important. The acceleration of the fluid medium in these instances often depends on time and space, whereas most past studies assume it to be constant or impulsive. Here, we analyze the symmetries of RT mixing for variable accelerations and obtain the scaling of correlations and spectra for classes of self-similar dynamics. RT mixing is shown to retain the memory of deterministic conditions for all accelerations, with the dynamics ranging from superballistic to subdiffusive. These results contribute to our understanding and control of the RT phenomena and reveal specific conditions under which Kolmogorov turbulence might be realized in RT mixing.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3