Mechanism of shaping membrane nanostructures of endoplasmic reticulum

Author:

Zucker BenORCID,Kozlov Michael M.

Abstract

Recent advances in super-resolution microscopy revealed the previously unknown nanoscopic level of organization of endoplasmic reticulum (ER), one of the most vital intracellular organelles. Membrane nanostructures of 10- to 100-nm intrinsic length scales, which include ER tubular matrices, ER sheet nanoholes, internal membranes of ER exit sites (ERES), and ER transport intermediates, were discovered and imaged in considerable detail, but the physical factors determining their unique geometrical features remained unknown. Here, we proposed and computationally substantiated a common concept for mechanisms of all ER nanostructures based on the membrane intrinsic curvature as a primary factor shaping the membrane and ultra-low membrane tensions as modulators of the membrane configurations. We computationally revealed a common structural motif underlying most of the nanostructures. We predicted the existence of a discrete series of equilibrium configurations of ER tubular matrices and recovered the one corresponding to the observations and favored by ultra-low tensions. We modeled the nanohole formation as resulting from a spontaneous collapse of elements of the ER tubular network adjacent to the ER sheet edge and calculated the nanohole dimensions. We proposed the ERES membrane to have a shape of a super flexible membrane bead chain, which acquires random walk configurations unless an ultra-low tension converts it into a straight conformation of a transport intermediate. The adequacy of the proposed concept is supported by a close qualitative and quantitative similarity between the predicted and observed configurations of all four ER nanostructures.

Funder

Israel Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3