Affiliation:
1. Ministry of Education (MOE) International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Abstract
Significance
The photosensitizer is one of the important components in the photocatalytic system. Molecular photosensitizers have well-defined structures, which is beneficial in revealing the catalysis mechanism and helpful for further structural design and performance optimization. However, separation and recycling of the molecular photosensitizers is a great problem. Loading them into/on two/three-dimensional supports through covalent bonds, electrostatic interactions, and supramolecular interactions is a method that enhances their separation and recycling capability. Nonetheless, the structures of the resulting composites are unclear. Thus, the development of highly crystalline heterogeneity methods for molecular photosensitizers, albeit greatly challenging, is meaningful and desirable in photocatalysis, through which heterogeneous photosensitizers with well-defined structures, definite catalysis mechanisms, and good catalytic performance would be expected.
Funder
National Natural Science Foundation of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献