Alternating lysis and lysogeny is a winning strategy in bacteriophages due to Parrondo's paradox

Author:

Cheong Kang Hao1ORCID,Wen Tao1,Benler Sean2,Koh Jin Ming13,Koonin Eugene V.2ORCID

Affiliation:

1. Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, S487372 Singapore

2. National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894

3. Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125

Abstract

Significance Bacteriophages, the most widespread reproducing biological entity on Earth, employ two strategies of virus–host interaction: lysis of the host cell and lysogeny whereby the virus genome integrates into the host genome and propagates vertically with it. We present a population model that reveals an effect known as Parrondo’s paradox in game theory: Alternating between lysis and lysogeny is a winning strategy for a bacteriophage, even when each strategy individually is at a disadvantage compared with a competing bacteriophage. Thus, evolution of bacteriophages appears to optimize the ratio between the lysis and lysogeny propensities rather than the phage burst size in any individual phase. This phenomenon is likely to be relevant for understanding evolution of other host–parasites systems.

Funder

US Department of Health and Humna Services

Singapore University of Technology and Design

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3