Mass spectrometric identification of immunogenic SARS-CoV-2 epitopes and cognate TCRs

Author:

Pan KeORCID,Chiu Yulun,Huang Eric,Chen Michelle,Wang Junmei,Lai Ivy,Singh Shailbala,Shaw Rebecca M.ORCID,MacCoss Michael J.,Yee CassianORCID

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID-19, the disease caused by SARS-CoV-2, it has become increasingly apparent that T cell responses are equally if not more important than humoral responses in mediating recovery and immune protection. One major challenge in developing T cell–based therapies for infectious and malignant diseases has been the identification of immunogenic epitopes that can elicit a meaningful T cell response. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes deduced from binding affinities. Our studies find that, in contrast to current convention, “immunodominant” SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing naturally presented SARS-CoV-2 epitopes. We postulated that immunogenic epitopes for SARS-CoV-2 are best defined empirically by directly analyzing peptides eluted from the naturally processed peptide–major histocompatibility complex (MHC) and then validating immunogenicity by determining whether such peptides can elicit T cells recognizing SARS-CoV-2 antigen-expressing cells. Using a tandem mass spectrometry approach, we identified epitopes derived from not only structural but also nonstructural genes in regions highly conserved among SARS-CoV-2 strains, including recently recognized variants. Finally, there are no reported T cell receptor–engineered T cell technology that can redirect T cell specificity to recognize and kill SARS-CoV-2 target cells. We report here several SARS-CoV-2 epitopes defined by mass spectrometric analysis of MHC-eluted peptides, provide empiric evidence for their immunogenicity, and demonstrate engineered TCR-redirected killing.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3